Construction Portfolio Part 3

Carry out these constructions, each one on a separate side of paper.

18: Square area equal to rectangle area

Construct a square whose area equals the area of rectangle ABCD .

19: Medians and Centroid

Construct the 3 medians and the centroid of triangle ABC.

20: Inscribed Equilateral Triangle

Construct an equilateral triangle inscribed in this circle. (First, construct the center of the circle!)

21: Inscribed Circle in Kite

Construct a circle inscribed in kite ABCD.

22: Incircles and Ecircles

Construct all 3 interior and all 3 exterior angle bisectors, then use these bisectors to construct the circle inscribed in triangle ABC and the 3 circles escribed in triangle ABC (i.e., all 4 circles are tangent to all 3 lines that are the extended sides of $A B C$).

23: Ratios internal and external

Divide AB internally and externally in the ratio 5:2, i.e., construct two points P and Q for which $|\mathrm{AP} / \mathrm{BP}|=|\mathrm{AQ} / \mathrm{BQ}|=5 / 2$.
A A

24: Dilation of Triangle

Construct points E on segment OB and F on segment OC so that these ratios are equal: $\mathrm{OD} / \mathrm{OA}=\mathrm{OE} / \mathrm{OB}=\mathrm{OF} / \mathrm{OC}$. Then draw segments for form triangle DEF.

This triangle DEF is the dilation of triangle ABC with center C and ratio OD/OA. Be sure to understand why triangle DEF is similar to triangle ABC .

25: Golden Rectangle

Given segment AB , construct C, D so that ABCD is a golden rectangle with longer side AB .

26: Regular Pentagon

Given segment AB , construct $\mathrm{C}, \mathrm{D}, \mathrm{E}$ so that ABCDE is a regular pentagon.

